Package: NNS 11.1

NNS: Nonlinear Nonparametric Statistics

Nonlinear nonparametric statistics using partial moments. Partial moments are the elements of variance and asymptotically approximate the area of f(x). These robust statistics provide the basis for nonlinear analysis while retaining linear equivalences. NNS offers: Numerical integration, Numerical differentiation, Clustering, Correlation, Dependence, Causal analysis, ANOVA, Regression, Classification, Seasonality, Autoregressive modeling, Normalization, Stochastic dominance and Advanced Monte Carlo sampling. All routines based on: Viole, F. and Nawrocki, D. (2013), Nonlinear Nonparametric Statistics: Using Partial Moments (ISBN: 1490523995).

Authors:Fred Viole [aut, cre], Roberto Spadim [ctb]

NNS_11.1.tar.gz
NNS_11.1.zip(r-4.5)NNS_11.1.zip(r-4.4)NNS_11.1.zip(r-4.3)
NNS_11.1.tgz(r-4.5-x86_64)NNS_11.1.tgz(r-4.5-arm64)NNS_11.1.tgz(r-4.4-x86_64)NNS_11.1.tgz(r-4.4-arm64)NNS_11.1.tgz(r-4.3-x86_64)NNS_11.1.tgz(r-4.3-arm64)
NNS_11.1.tar.gz(r-4.5-noble)NNS_11.1.tar.gz(r-4.4-noble)
NNS_11.1.tgz(r-4.4-emscripten)NNS_11.1.tgz(r-4.3-emscripten)
NNS.pdf |NNS.html
NNS/json (API)

# Install 'NNS' in R:
install.packages('NNS', repos = c('https://ovvo-financial.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/ovvo-financial/nns/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

clusteringeconometricsmachine-learningnonlinearnonparametricpartial-momentsstatisticstime-seriescpp

10.82 score 68 stars 3 packages 66 scripts 2.1k downloads 11 mentions 45 exports 46 dependencies

Last updated 3 days agofrom:5f295ad0a5. Checks:1 OK, 10 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 17 2025
R-4.5-win-x86_64WARNINGFeb 17 2025
R-4.5-mac-x86_64WARNINGFeb 17 2025
R-4.5-mac-aarch64WARNINGFeb 17 2025
R-4.5-linux-x86_64WARNINGFeb 17 2025
R-4.4-win-x86_64WARNINGFeb 17 2025
R-4.4-mac-x86_64WARNINGFeb 17 2025
R-4.4-mac-aarch64WARNINGFeb 17 2025
R-4.3-win-x86_64WARNINGFeb 17 2025
R-4.3-mac-x86_64WARNINGFeb 17 2025
R-4.3-mac-aarch64WARNINGFeb 17 2025

Exports:Co.LPMCo.UPMD.LPMD.UPMdy.d_dy.dxLPMLPM.ratioLPM.VaRNNS.ANOVANNS.ARMANNS.ARMA.optimNNS.boostNNS.causNNS.CDFNNS.copulaNNS.depNNS.diffNNS.distanceNNS.FSDNNS.FSD.uniNNS.gravityNNS.MCNNS.mebootNNS.modeNNS.momentsNNS.normNNS.nowcastNNS.partNNS.regNNS.rescaleNNS.SD.clusterNNS.SD.efficient.setNNS.seasNNS.SSDNNS.SSD.uniNNS.stackNNS.term.matrixNNS.TSDNNS.TSD.uniNNS.VARPM.matrixUPMUPM.ratioUPM.VaR

Dependencies:base64encbslibcachemclicodetoolscurldata.tabledigestdoParallelevaluatefastmapfontawesomeforeachfsgluehighrhtmltoolshtmlwidgetsiteratorsjquerylibjsonliteknitrlatticelifecyclemagrittrmemoisemimequantmodR6rappdirsRcppRcppArmadilloRcppGSLRcppParallelRcppZigguratRfastrglrlangrmarkdownsasstinytexTTRxfunxtsyamlzoo

Getting Started with NNS: Classification

Rendered fromNNSvignette_Classification.Rmdusingknitr::rmarkdownon Feb 17 2025.

Last update: 2024-09-03
Started: 2019-05-14

Getting Started with NNS: Clustering and Regression

Rendered fromNNSvignette_Clustering_and_Regression.Rmdusingknitr::rmarkdownon Feb 17 2025.

Last update: 2024-09-12
Started: 2017-03-22

Getting Started with NNS: Comparing Distributions

Rendered fromNNSvignette_Comparing_Distributions.Rmdusingknitr::rmarkdownon Feb 17 2025.

Last update: 2025-02-14
Started: 2023-07-05

Getting Started with NNS: Correlation and Dependence

Rendered fromNNSvignette_Correlation_and_Dependence.Rmdusingknitr::rmarkdownon Feb 17 2025.

Last update: 2024-10-14
Started: 2017-03-22

Getting Started with NNS: Forecasting

Rendered fromNNSvignette_Forecasting.Rmdusingknitr::rmarkdownon Feb 17 2025.

Last update: 2025-01-03
Started: 2017-03-23

Getting Started with NNS: Partial Moments

Rendered fromNNSvignette_Partial_Moments.Rmdusingknitr::rmarkdownon Feb 17 2025.

Last update: 2024-12-16
Started: 2017-03-22

Getting Started with NNS: Sampling and Simulation

Rendered fromNNSvignette_Sampling.Rmdusingknitr::rmarkdownon Feb 17 2025.

Last update: 2024-12-02
Started: 2023-08-04