Package: NNS 10.9.3

NNS: Nonlinear Nonparametric Statistics

Nonlinear nonparametric statistics using partial moments. Partial moments are the elements of variance and asymptotically approximate the area of f(x). These robust statistics provide the basis for nonlinear analysis while retaining linear equivalences. NNS offers: Numerical integration, Numerical differentiation, Clustering, Correlation, Dependence, Causal analysis, ANOVA, Regression, Classification, Seasonality, Autoregressive modeling, Normalization, Stochastic dominance and Advanced Monte Carlo sampling. All routines based on: Viole, F. and Nawrocki, D. (2013), Nonlinear Nonparametric Statistics: Using Partial Moments (ISBN: 1490523995).

Authors:Fred Viole [aut, cre], Roberto Spadim [ctb]

NNS_10.9.3.tar.gz
NNS_10.9.3.zip(r-4.5)NNS_10.9.3.zip(r-4.4)NNS_10.9.3.zip(r-4.3)
NNS_10.9.3.tgz(r-4.4-x86_64)NNS_10.9.3.tgz(r-4.4-arm64)NNS_10.9.3.tgz(r-4.3-x86_64)NNS_10.9.3.tgz(r-4.3-arm64)
NNS_10.9.3.tar.gz(r-4.5-noble)NNS_10.9.3.tar.gz(r-4.4-noble)
NNS_10.9.3.tgz(r-4.4-emscripten)NNS_10.9.3.tgz(r-4.3-emscripten)
NNS.pdf |NNS.html
NNS/json (API)

# Install 'NNS' in R:
install.packages('NNS', repos = c('https://ovvo-financial.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ovvo-financial/nns/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

clusteringeconometricsmachine-learningnonlinearnonparametricpartial-momentsstatisticstime-series

10.83 score 66 stars 3 packages 70 scripts 1.8k downloads 11 mentions 44 exports 46 dependencies

Last updated 18 days agofrom:271abc41bb. Checks:OK: 1 WARNING: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-win-x86_64WARNINGNov 04 2024
R-4.5-linux-x86_64WARNINGNov 04 2024
R-4.4-win-x86_64WARNINGNov 04 2024
R-4.4-mac-x86_64WARNINGNov 04 2024
R-4.4-mac-aarch64WARNINGNov 04 2024
R-4.3-win-x86_64WARNINGNov 04 2024
R-4.3-mac-x86_64WARNINGNov 04 2024
R-4.3-mac-aarch64WARNINGNov 04 2024

Exports:Co.LPMCo.UPMD.LPMD.UPMdy.d_dy.dxLPMLPM.ratioLPM.VaRNNS.ANOVANNS.ARMANNS.ARMA.optimNNS.boostNNS.causNNS.CDFNNS.copulaNNS.depNNS.diffNNS.distanceNNS.FSDNNS.FSD.uniNNS.gravityNNS.MCNNS.mebootNNS.modeNNS.momentsNNS.normNNS.nowcastNNS.partNNS.regNNS.rescaleNNS.SD.efficient.setNNS.seasNNS.SSDNNS.SSD.uniNNS.stackNNS.term.matrixNNS.TSDNNS.TSD.uniNNS.VARPM.matrixUPMUPM.ratioUPM.VaR

Dependencies:base64encbslibcachemclicodetoolscurldata.tabledigestdoParallelevaluatefastmapfontawesomeforeachfsgluehighrhtmltoolshtmlwidgetsiteratorsjquerylibjsonliteknitrlatticelifecyclemagrittrmemoisemimequantmodR6rappdirsRcppRcppArmadilloRcppGSLRcppParallelRcppZigguratRfastrglrlangrmarkdownsasstinytexTTRxfunxtsyamlzoo

Getting Started with NNS: Classification

Rendered fromNNSvignette_Classification.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2024-09-03
Started: 2019-05-14

Getting Started with NNS: Clustering and Regression

Rendered fromNNSvignette_Clustering_and_Regression.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2024-09-12
Started: 2017-03-22

Getting Started with NNS: Comparing Distributions

Rendered fromNNSvignette_Comparing_Distributions.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2024-09-03
Started: 2023-07-05

Getting Started with NNS: Correlation and Dependence

Rendered fromNNSvignette_Correlation_and_Dependence.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2024-10-14
Started: 2017-03-22

Getting Started with NNS: Forecasting

Rendered fromNNSvignette_Forecasting.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2024-09-05
Started: 2017-03-23

Getting Started with NNS: Partial Moments

Rendered fromNNSvignette_Partial_Moments.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2024-09-03
Started: 2017-03-22

Getting Started with NNS: Sampling and Simulation

Rendered fromNNSvignette_Sampling.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2024-09-03
Started: 2023-08-04