Package: NNS 10.9.3
NNS: Nonlinear Nonparametric Statistics
Nonlinear nonparametric statistics using partial moments. Partial moments are the elements of variance and asymptotically approximate the area of f(x). These robust statistics provide the basis for nonlinear analysis while retaining linear equivalences. NNS offers: Numerical integration, Numerical differentiation, Clustering, Correlation, Dependence, Causal analysis, ANOVA, Regression, Classification, Seasonality, Autoregressive modeling, Normalization, Stochastic dominance and Advanced Monte Carlo sampling. All routines based on: Viole, F. and Nawrocki, D. (2013), Nonlinear Nonparametric Statistics: Using Partial Moments (ISBN: 1490523995).
Authors:
NNS_10.9.3.tar.gz
NNS_10.9.3.zip(r-4.5)NNS_10.9.3.zip(r-4.4)NNS_10.9.3.zip(r-4.3)
NNS_10.9.3.tgz(r-4.4-x86_64)NNS_10.9.3.tgz(r-4.4-arm64)NNS_10.9.3.tgz(r-4.3-x86_64)NNS_10.9.3.tgz(r-4.3-arm64)
NNS_10.9.3.tar.gz(r-4.5-noble)NNS_10.9.3.tar.gz(r-4.4-noble)
NNS_10.9.3.tgz(r-4.4-emscripten)NNS_10.9.3.tgz(r-4.3-emscripten)
NNS.pdf |NNS.html✨
NNS/json (API)
# Install 'NNS' in R: |
install.packages('NNS', repos = c('https://ovvo-financial.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ovvo-financial/nns/issues
clusteringeconometricsmachine-learningnonlinearnonparametricpartial-momentsstatisticstime-series
Last updated 18 days agofrom:271abc41bb. Checks:OK: 1 WARNING: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-win-x86_64 | WARNING | Nov 04 2024 |
R-4.5-linux-x86_64 | WARNING | Nov 04 2024 |
R-4.4-win-x86_64 | WARNING | Nov 04 2024 |
R-4.4-mac-x86_64 | WARNING | Nov 04 2024 |
R-4.4-mac-aarch64 | WARNING | Nov 04 2024 |
R-4.3-win-x86_64 | WARNING | Nov 04 2024 |
R-4.3-mac-x86_64 | WARNING | Nov 04 2024 |
R-4.3-mac-aarch64 | WARNING | Nov 04 2024 |
Exports:Co.LPMCo.UPMD.LPMD.UPMdy.d_dy.dxLPMLPM.ratioLPM.VaRNNS.ANOVANNS.ARMANNS.ARMA.optimNNS.boostNNS.causNNS.CDFNNS.copulaNNS.depNNS.diffNNS.distanceNNS.FSDNNS.FSD.uniNNS.gravityNNS.MCNNS.mebootNNS.modeNNS.momentsNNS.normNNS.nowcastNNS.partNNS.regNNS.rescaleNNS.SD.efficient.setNNS.seasNNS.SSDNNS.SSD.uniNNS.stackNNS.term.matrixNNS.TSDNNS.TSD.uniNNS.VARPM.matrixUPMUPM.ratioUPM.VaR
Dependencies:base64encbslibcachemclicodetoolscurldata.tabledigestdoParallelevaluatefastmapfontawesomeforeachfsgluehighrhtmltoolshtmlwidgetsiteratorsjquerylibjsonliteknitrlatticelifecyclemagrittrmemoisemimequantmodR6rappdirsRcppRcppArmadilloRcppGSLRcppParallelRcppZigguratRfastrglrlangrmarkdownsasstinytexTTRxfunxtsyamlzoo
Getting Started with NNS: Classification
Rendered fromNNSvignette_Classification.Rmd
usingknitr::rmarkdown
on Nov 04 2024.Last update: 2024-09-03
Started: 2019-05-14
Getting Started with NNS: Clustering and Regression
Rendered fromNNSvignette_Clustering_and_Regression.Rmd
usingknitr::rmarkdown
on Nov 04 2024.Last update: 2024-09-12
Started: 2017-03-22
Getting Started with NNS: Comparing Distributions
Rendered fromNNSvignette_Comparing_Distributions.Rmd
usingknitr::rmarkdown
on Nov 04 2024.Last update: 2024-09-03
Started: 2023-07-05
Getting Started with NNS: Correlation and Dependence
Rendered fromNNSvignette_Correlation_and_Dependence.Rmd
usingknitr::rmarkdown
on Nov 04 2024.Last update: 2024-10-14
Started: 2017-03-22
Getting Started with NNS: Forecasting
Rendered fromNNSvignette_Forecasting.Rmd
usingknitr::rmarkdown
on Nov 04 2024.Last update: 2024-09-05
Started: 2017-03-23
Getting Started with NNS: Partial Moments
Rendered fromNNSvignette_Partial_Moments.Rmd
usingknitr::rmarkdown
on Nov 04 2024.Last update: 2024-09-03
Started: 2017-03-22
Getting Started with NNS: Sampling and Simulation
Rendered fromNNSvignette_Sampling.Rmd
usingknitr::rmarkdown
on Nov 04 2024.Last update: 2024-09-03
Started: 2023-08-04